Extensions 1→N→G→Q→1 with N=C22×D7 and Q=C8

Direct product G=N×Q with N=C22×D7 and Q=C8
dρLabelID
D7×C22×C8224D7xC2^2xC8448,1189

Semidirect products G=N:Q with N=C22×D7 and Q=C8
extensionφ:Q→Out NdρLabelID
(C22×D7)⋊C8 = (C22×D7)⋊C8φ: C8/C2C4 ⊆ Out C22×D7112(C2^2xD7):C8448,25
(C22×D7)⋊2C8 = D7×C22⋊C8φ: C8/C4C2 ⊆ Out C22×D7112(C2^2xD7):2C8448,258
(C22×D7)⋊3C8 = C2×D14⋊C8φ: C8/C4C2 ⊆ Out C22×D7224(C2^2xD7):3C8448,642

Non-split extensions G=N.Q with N=C22×D7 and Q=C8
extensionφ:Q→Out NdρLabelID
(C22×D7).C8 = M5(2)⋊D7φ: C8/C2C4 ⊆ Out C22×D71124(C2^2xD7).C8448,71
(C22×D7).2C8 = D14⋊C16φ: C8/C4C2 ⊆ Out C22×D7224(C2^2xD7).2C8448,64
(C22×D7).3C8 = C2×C16⋊D7φ: C8/C4C2 ⊆ Out C22×D7224(C2^2xD7).3C8448,434
(C22×D7).4C8 = D7×M5(2)φ: C8/C4C2 ⊆ Out C22×D71124(C2^2xD7).4C8448,440
(C22×D7).5C8 = D7×C2×C16φ: trivial image224(C2^2xD7).5C8448,433

׿
×
𝔽